Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach

نویسندگان

  • Rui Xu
  • Peter Stansby
  • Dominique Laurence
چکیده

The stability and accuracy of three methods which enforce either a divergence-free velocity field, density invariance, or their combination are tested here through the standard Taylor?Green and spin-down vortex problems. While various approaches to incompressible SPH (ISPH) have been proposed in the past decade, the present paper is restricted to the projection method for the pressure and velocity coupling. It is shown that the divergence-free ISPH method cannot maintain stability in certain situations although it is accurate before instability sets in. The density-invariant ISPH method is stable but inaccurate with randomnoise like disturbances. The combined ISPH, combining advantages in divergence-free ISPH and density-invariant ISPH, can maintain accuracy and stability although at a higher computational cost. Redistribution of particles on a fixed uniform mesh is also shown to be effective but the attraction of a mesh-free method is lost. A new divergence-free ISPH approach is proposed here which maintains accuracy and stability while remaining mesh free without increasing computational cost by slightly shifting particles away from streamlines, although the necessary interpolation of hydrodynamic characteristics means the formulation ceases to be strictly conservative. This avoids the highly anisotropic particle spacing which eventually triggers instability. Importantly pressure fields are free from spurious oscillations, up to the highest Reynolds numbers tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows

In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on soli...

متن کامل

Incompressible SPH method based on Rankine source solution for violent water wave simulation

With wide applications, the smoothed particle hydrodynamics method (abbreviated as SPH) has become an important numerical tool for solving complex flows, in particular those with a rapidly moving free surface. For such problems, the incompressible Smoothed Particle Hydrodynamics (ISPH) has been shown to yield better and more stable pressure time histories than the traditional SPH by many papers...

متن کامل

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

ISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes

Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009